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Fisica Tecnica 

Formulario e cose importanti 

 

 

 Regole generali delle fasi 

Regola delle fasi di Gibbs 

𝑉 = 𝐶 + 2 − 𝐹 

Con: 𝑉 variabili intensive indipendenti 

 𝐶 componenti 

 𝐹 fasi 

Coefficiente di dilatazione isobara per solidi e liquidi 

𝛽 =
1

𝑣
(

∂𝑣

𝜕𝑇
)

𝑃
 

Coefficiente di comprimibilità isoterma per solidi e liquidi 

𝜅𝑇 = −
1

𝑣
(

𝜕𝑣

𝜕𝑃
)

𝑇
 

Equazione di stato del solido e del liquido incomprimibile 

𝑑𝑣 = 𝛽𝑣𝑑𝑇 − 𝜅𝑇𝑣𝑑𝑃   ⇒    𝛽𝑑𝑇 − 𝜅𝑇𝑑𝑃 = 0 
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 Principi della termodinamica 

Principio di conservazione in forma generale per grandezze estensive 

Δ𝐺 = 𝐺1 − 𝐺2 = 𝐺← 

Primo principio della termodinamica 

Per un sistema semplice chiuso e all’equilibrio la variazione di energia interna è il risultato delle 

interazioni del sistema con l’ambiente. 

Δ𝑈 = 𝑄← − 𝐿→ 

In forma differenziale diventa: 

𝛿𝑢 = 𝛿𝑞← − 𝛿𝑙→ 

La variazione è nulla in un sistema isolato. Inoltre, per trasformazioni cicliche, l’energia interna 

iniziale coincide con quella finale. 

Secondo principio della termodinamica 

1° postulato: in un sistema all’equilibrio esiste una funzione di stato detta entropia la cui 

variazione dopo una trasformazione reversibile vale: 

Δ𝑆 = ∫
𝛿𝑄𝑟𝑒𝑣

←

𝑇

𝑓

𝑖

 

Come si nota dalla formulazione del primo postulato solo lo scambio termico è sempre 

accompagnato da una variazione di entropia, il lavoro non causa mai variazioni di tale 

grandezza. 

2° postulato: l’entropia è una grandezza estensiva e additiva. 

3° postulato: la variazione di entropia in un sistema isolato sede di trasformazioni è sempre 

maggiore di zero. Vi tende nel momento in cui le trasformazioni tendono alla reversibilità. 

Δ𝑆 ≥ 0 

Bilancio entropico 

Δ𝑆 = 𝑆𝑄
← + 𝑆𝑖𝑟𝑟   𝑐𝑜𝑛   𝑆𝑖𝑟𝑟 ≥ 0 

Lavoro 

Il lavoro è direttamente proporzionale alla variazione di volume. Il lavoro prodotto in modo 

irreversibile è sempre maggiore di quello reversibile. 

𝛿𝐿→ = 𝑃𝑑𝑉 

𝑙→ = ∫ 𝑃(𝑣) 𝑑𝑣 

Per una isoterma: 

𝐿→ = 𝑀𝑅∗𝑇𝑙𝑛 (
𝑣𝑓

𝑣𝑖
) 

Entalpia 

ℎ = 𝑢 + 𝑃𝑣 
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Capacità termica e calore specifico 

Il rapporto tra quantità di calore scambiato e delta di temperatura è detto capacità termica 

propria di un materiale. 

𝐶𝑥 = (
𝛿𝑄←

𝑑𝑇
)

𝑥
 

La quantità massica di capacità termica è detta calore specifico. 

Calore specifico a volume costante 

𝑐𝑉 = (
𝛿𝑞←

𝜕𝑇
)

𝑉
= (

∂𝑢

𝜕𝑇
)

𝑉
 

Calore specifico a pressione costante 

𝑐𝑃 = (
𝛿𝑞←

𝜕𝑇
)

𝑃
= (

∂ℎ

𝜕𝑇
)

𝑃
 

Relazione di Mayer 

𝑐𝑃 = 𝑐𝑉 + 𝑅∗ 

Espansione libera di Joule 

È un’esperienza che dimostra la dipendenza dell’energia interna dalla sola temperatura. Presi 

due volumi separati da una valvola, fatto il vuoto in uno dei due e posto un gas nell’altro, 

all’apertura della valvola il gas espande occupando tutto il volume vuoto. Essendo il sistema 

isolato si ha che la differenza di energia interna deve essere nulla, inoltre si nota che la 

temperatura non varia. Il fatto che entrambe le grandezze non varino ne dimostra il legame. 
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 Variazioni delle grandezze estensive 

Variazione di energia interna in un gas perfetto 

Integrando la formula del calore specifico a volume costante si ottiene che 

𝑢2 − 𝑢1 = 𝑐𝑉(𝑇2 − 𝑇1) 

Variazione di entalpia in un gas perfetto 

Integrando la formula del calore specifico a pressione costante si ottiene che 

ℎ2 − ℎ1 = 𝑐𝑃(𝑇2 − 𝑇1) 

Variazione di entropia in un gas perfetto 

Integrando la formula dell’entropia, dove sostituisco 𝛿𝑞← = 𝑑𝑢 + 𝑃𝑑𝑣 che deriva dalla 

formula dell’energia interna, ottengo a seconda dei casi: 

Se 𝑆 = 𝑆(𝑇, 𝑣)   𝑠2 − 𝑠1 = 𝑐𝑉𝑙𝑛 (
𝑇2

𝑇1
) + 𝑅∗𝑙𝑛 (

𝑣2

𝑣1
) 

Se 𝑆 = 𝑆(𝑃, 𝑣)   𝑠2 − 𝑠1 = 𝑐𝑃𝑙𝑛 (
𝑣2

𝑣1
) + 𝑐𝑉𝑙𝑛 (

𝑃2

𝑃1
) 

Se 𝑆 = 𝑆(𝑇, 𝑃)   𝑠2 − 𝑠1 = 𝑐𝑃𝑙𝑛 (
𝑇2

𝑇1
) − 𝑅∗𝑙𝑛 (

𝑃2

𝑃1
) 

Variazione di energia interna in un solido o in un liquido incomprimibile 

𝑢2 − 𝑢1 = 𝑐(𝑇2 − 𝑇1) 

Variazione di entalpia in un solido o in un liquido incomprimibile 

ℎ2 − ℎ1 = 𝑐(𝑇2 − 𝑇1) + 𝑣(𝑃2 − 𝑃1) 

Variazione di entropia in un solido o in un liquido incomprimibile 

𝑠2 − 𝑠1 = 𝑐𝑙𝑛 (
𝑇2

𝑇1
) 
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 Trasformazioni termodinamiche 

Trasformazione politropica 

Le politropiche sono trasformazioni quasi-statiche reversibili di un gas caratterizzate da calore 

specifico costante. 

𝑘 = 𝛾 =
𝑐𝑝

𝑐𝑣
 

 Isoterma Isobara Isocora Isoentropica 

Legge 𝑃𝑣 = 𝑐𝑜𝑠𝑡. 
𝑇

𝑣
= 𝑐𝑜𝑠𝑡. 

𝑇

𝑃
= 𝑐𝑜𝑠𝑡. 𝑃𝑣𝑘 = 𝑐𝑜𝑠𝑡. 

𝒍→ 𝑅∗𝑇 ln (
𝑣2

𝑣1
) 𝑃(𝑣2 − 𝑣1) 0 −𝑐𝑉(𝑇2 − 𝑇1) 

𝒒← 𝑅∗𝑇 ln (
𝑣2

𝑣1
) 𝑐𝑃(𝑇2 − 𝑇1) 𝑐𝑉(𝑇2 − 𝑇1) 0 

𝚫𝒖 0 𝑐𝑉(𝑇2 − 𝑇1) 𝑐𝑉(𝑇2 − 𝑇1) 𝑐𝑉(𝑇2 − 𝑇1) 

𝚫𝒉 0 𝑐𝑃(𝑇2 − 𝑇1) 𝑐𝑃(𝑇2 − 𝑇1) 𝑐𝑃(𝑇2 − 𝑇1) 

𝚫𝒔 0 𝑐𝑃 ln (
𝑇2

𝑇1
) 𝑐𝑉 ln (

𝑇2

𝑇1
) 0 

 

Formule per la trasformazione isoentropica/adiabatica 

𝑃𝑣𝛾 = 𝑐𝑜𝑠𝑡. 

𝑇𝑣𝛾−1 = 𝑐𝑜𝑠𝑡. 

𝑇𝑃
1−𝛾

 𝛾 = 𝑐𝑜𝑠𝑡. 

Definizione di gas 

Un gas è un fluido con particolari caratteristiche tali che: 

𝑃 < 𝑃𝑐𝑟 

𝑇 > 𝑇𝑐𝑟 
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 Transizioni di fase 

Grafico delle fasi 

Le transizioni di fase e gli stati dei vari composti, sono bene individuabili sul grafico P-T. in 

realtà deriva da una sezione di una rappresentazione 3D, ma questo ci basta per capire a ogni 

volume come un composto si comporta. Le righe che separano le fasi sono dette curve limite. Il 

punto di intersezione delle tre curve si dice punto triplo. La linea che divide vapori e liquidi è 

spezzata proseguendo ad alte temperature. Qui si trova il punto critico, che è un importante 

limite oltre il quale si accede a zone supercritiche dei fluidi, dai quali vengono assunte 

caratteristiche del tutto particolari ed esclusive. 

Titolo di vapore 

Indica la frazione massica di vapore presente nel sistema bifasico. 

𝑥𝑉 =
𝑀𝑉𝑎𝑝𝑜𝑟𝑒

𝑀𝑇𝑜𝑡𝑎𝑙𝑒
 

Per determinati valori di 𝑥𝑉 si hanno determinati stati particolari del fluido: 

𝑥𝑉 = 0  Liquido saturo 

𝑥𝑉 = 1  Vapore saturo 

0 < 𝑥𝑉 < 1 Bifase Liquido e Vapore 

Regola della leva per il calcolo del titolo 

Con 𝑔 grandezza estensiva qualsiasi vale 

𝑔 = (1 − 𝑥𝑉)𝑔𝑙 + 𝑥𝑉𝑔𝑉 

Transizione di fase 

Durante la transizione di fase non viene scambiato altro che calore, per questo motivo si ha 

variazione della sola entalpia: 

𝑑ℎ = 𝛿𝑞← 

Le transizioni di fase sono processi isotermo-barici. Spesso i salti entalpici sono sfruttati (come 

nei cicli a vapore) per scambiare quantità di energia (calore) mantenendo i fluidi alla stessa 

temperatura. Sfruttare fluidi a massa volumica alta, inoltre, porta ad avere scambi entalpici 

maggiori. 

Entalpia ed entropia di un liquido sottoraffreddato 

Un liquido sottoraffreddato perfetto ha calore specifico e volume specifico costante. 

ℎ1(𝑃, 𝑇) = ℎ𝑙𝑠(𝑇) + 𝑣𝑙𝑠(𝑇)(𝑃 − 𝑃𝑙𝑠(𝑇)) 

𝑠(𝑇) = 𝑠𝑙𝑠(𝑇) 
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 Macchine termodinamiche 

Macchina termodinamica isolata 

Ogni sistema può essere considerato come isolato, dove vengono compresi la macchina ciclica, 

cuore delle trasformazioni, e serbatoi, siano essi di calore o di lavoro. All’interno della 

macchina ciclica un ciclo termodinamico trasforma il fluido volvente scambiando le varie 

forme di energia. 

Secondo principio della termodinamica applicato alle macchine 

1. Il calore passa spontaneamente da un corpo caldo a uno freddo. 

2. Non esiste una macchina termica che non produca altro effetto che il trasferimento 

di calore da un corpo freddo a uno caldo. 

3. Non esiste macchina ciclica che trasformi tutto il calore in lavoro. 

Macchina motrice 

Si definisce macchina motrice una macchina termodinamica che sposta calore da una sorgente 

calda a una sorgente più fredda per produrre lavoro. Per ricavare le seguenti si parte dai bilanci 

interni di ogni sottocomponente della macchina termodinamica. Così facendo si riscrivono i 

bilanci generali semplificando in base alle ipotesi di sistema isolato. 

𝐿 = 𝐿𝑟𝑒𝑣 − 𝑇𝑓𝑆𝑖𝑟𝑟 = 𝑄𝑐 (1 −
𝑇𝑓

𝑇𝑐
) − 𝑇𝑓𝑆𝑖𝑟𝑟 

𝜂 =
𝐿

𝑄𝑐
= (1 −

𝑇𝑓

𝑇𝑐
) −

𝑇𝑓𝑆𝑖𝑟𝑟

𝑄𝑐
=

𝐿𝑟𝑒𝑣

𝑄𝑐
−

𝑇𝑓𝑆𝑖𝑟𝑟

𝑄𝑐
= 𝜂𝑟𝑒𝑣 −

𝑇𝑓𝑆𝑖𝑟𝑟

𝑄𝑐
 

Con  𝜂𝑟𝑒𝑣 = 1 −
𝑇𝑓

𝑇𝑐
  solo per i casi in cui sorgenti calde e fredde sono isoterme. Per il 

rendimento di secondo principio vale  

𝜂𝐼𝐼 =
𝐿

𝐿𝑟𝑒𝑣
=

𝜂

𝜂𝑟𝑒𝑣
 

Macchina operatrice 

Si definisce macchina operatrice una macchina termodinamica che preleva lavoro per spostare 

calore da una sorgente più fredda a una più calda. Le seguenti sono facilmente ricavabili come 

nel caso della macchina motrice. 

Frigorifera: 

𝐿 = 𝑄𝑓 (
𝑇𝑐

𝑇𝑓
− 1) + 𝑇𝑐𝑆𝑖𝑟𝑟 

𝜀𝐹 =
𝑄𝑓

𝐿
=

𝑄𝑓

𝑄𝑓 (
𝑇𝑐
𝑇𝑓

− 1) + 𝑇𝑐𝑆𝑖𝑟𝑟

=
𝑇𝑓

𝑇𝑐 − 𝑇𝑓 +
𝑇𝑐𝑇𝑓𝑆𝑖𝑟𝑟

𝑄𝑓

 

Con 𝜀𝐹,𝑟𝑒𝑣 =
𝑇𝑓

𝑇𝑐−𝑇𝑓
< 1 

Pompa di calore: 

𝐿 = 𝑄𝑐 (1 −
𝑇𝑓

𝑇𝑐
) + 𝑇𝑓𝑆𝑖𝑟𝑟 

www.andreadd.it


 

8 

𝜀𝑃 =
𝑄𝑐

𝐿
=

𝑄𝑐

𝑄𝑐 (1 −
𝑇𝑓

𝑇𝑐
) + 𝑇𝑓𝑆𝑖𝑟𝑟

=
𝑇𝑐

𝑇𝑐 − 𝑇𝑓 +
𝑇𝑐𝑇𝑓𝑆𝑖𝑟𝑟

𝑄𝑐

 

Con 𝜀𝑃,𝑟𝑒𝑣 =
𝑇𝑐

𝑇𝑐−𝑇𝑓
> 1  !!!  

Per il rendimento di secondo principio delle macchine operatrici vale  

𝜂𝐼𝐼 =
𝐿𝑟𝑒𝑣

𝐿
=

𝜀

𝜀𝑟𝑒𝑣
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 Sistemi aperti 

Ipotesi per lo studio di sistemi aperti 

• Flussi monodimensionali 

• Equilibri locali 

• Bilanci differenziali rispetto al tempo 

Bilancio di massa ed equazione di continuità per un sistema aperto. 

𝑑𝑀

𝑑𝑡
= ∑ 𝑚̇𝑘

← 

In due sezioni A e B vale sempre che la portata si conserva variando densità e/o velocità del 

fluido volvente. 

𝜌𝐴𝑤𝐴Ω𝐴 = 𝜌𝐵𝑤𝐵Ω𝐵 

Bilancio di energia per un sistema aperto. 

𝑑𝐸

𝑑𝑡
= ∑ 𝑚̇𝑘

← (ℎ + 𝑔𝑧 +
1

2
𝑤2) + ∑ 𝑄̇𝑗

← − ∑ 𝐿̇𝑒,𝑖
→  

Si nota l’utilizzo del lavoro d’elica, ovvero una forma di lavoro imputabile alle parti meccaniche 

che tengono in moto il fluido nel sistema aperto. Deriva dal lavoro di pulsione, cioè quel lavoro 

che bisogna compiere sul fluido in modo che esso possa battere la pressione del sistema ed 

entrarci/passarci attraverso. 

Bilancio di entropia per un sistema aperto. 

𝑑𝑆

𝑑𝑡
= ∑ 𝑚̇𝑘

←𝑠𝑘 + ∑ 𝑆̇𝑄,𝑗
← + 𝑆̇𝑖𝑟𝑟 

Forma differenziale del bilancio di lavoro. 

Si può ricavare esaminando una fetta ristretta del sistema di lunghezza 𝑑𝑥. Sviluppando tutti i 

bilanci introdotti appena sopra e integrando si ottiene infine la relazione 

𝑙𝑒
→ = − ∫ 𝑣𝑑𝑃

𝑢

𝑖

− ∫ 𝑇𝛿𝑠𝑖𝑟𝑟

𝑢

𝑖

 

L’irreversibilità si può virtualmente tradurre in una variazione della temperatura del fluido. 

Regime stazionario. 

𝑑𝑀

𝑑𝑡
= 0          

𝑑𝐸

𝑑𝑡
= 0          

𝑑𝑆

𝑑𝑡
= 0 

Nel sistema, in ogni caso, possono variare le proprietà locali del fluido. 
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 Componenti 

Rendimento isoentropico di una turbina. La turbina è una macchina motrice aperta in cui 

avviene un’espansione del fluido per generare lavoro su un albero. Si sfrutta un salto entalpico 

per ottenere potenza meccanica. 

𝜂𝑖𝑠,𝑇 =
𝐿̇𝑇

→

𝐿̇𝑟𝑒𝑣
→

=
ℎ1 − ℎ2

ℎ1 − ℎ2𝑠
[
𝑚̇

𝑚̇
] 

Rendimento isoentropico di un compressore. Il compressore è una macchina operatrice 

aperta in cui avviene una compressione del fluido grazie al lavoro prelevato da un albero. 

Converte potenza meccanica in un salto entalpico che va ad energizzare il fluido. 

𝜂𝑖𝑠,𝐶 =
𝐿̇𝑟𝑒𝑣

→

𝐿̇𝐶
→

=
ℎ1 − ℎ2𝑠

ℎ1 − ℎ2
[
𝑚̇

𝑚̇
] 

Rendimento isoentropico per una pompa. 

𝜂𝑖𝑠,𝑃 =
𝐿̇𝑟𝑒𝑣

→

𝐿̇𝑃
→

[
𝑚̇

𝑚̇
] 

Scambiatori di calore. Sistemi atti allo scambio di calore tra uno o più fluidi. Importante 

notare come le componenti dovute al calore scompaiono dalla scrittura dell’entropia di uno 

scambiatore a più fluidi essendo il sistema complessivamente adiabatico. Ciò non avviene nello 

scambiatore a singolo fluido essendo appunto lo scopo di tale elemento quello di scambiare 

calore con l’esterno. 

Diffusori e ugelli. Sono sistemi adiabatici sfruttati per rallentare o accelerare (rispettivamente) 

puramente il fluido. Non avvengono scambi energetici di alcun tipo, al di fuori di salti entalpici. 

Valvola di laminazione isoentalpica. Serve a diminuire la pressione di un fluido senza 

ricorrere a scambi energetici, calorici o entalpici. Genera tuttavia un processo 

obbligatoriamente irreversibile in quanto lavora tramite una strozzatura che causa la comparsa 

di perdite di carico concentrate, e quindi di una diminuzione della pressione totale. 
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 Cicli termodinamici a gas 

Ciclo simmetrico. Un ciclo simmetrico è un particolare ciclo termodinamico per cui valgono: 

• Trasformazioni politropiche uguali a due a due 

• 𝑉1𝑉3 = 𝑉2𝑉4 

• 𝑃1𝑃3 = 𝑃2𝑃4 

• 𝑇1𝑇3 = 𝑇2𝑇4 

Ciclo di Carnot. 

 

Trasformazioni: 

• 1-2: compressione adiabatica isoentropica istantanea. Lavoro in entrata. 

• 2-3: espansione isoterma quasi-statica. Calore in entrata. 

• 3-4: espansione adiabatica isoentropica istantanea. Lavoro in uscita. 

• 4-1: compressione isoterma quasi-statica. Calore in uscita. 

Rendimento del ciclo ideale: 

𝜂𝐶,𝑟𝑒𝑣 = 1 −
𝑇1

𝑇2
 

Rendimento del ciclo reale: 

𝜂𝐶 = 1 −
𝑇𝐹

𝑇𝐶
−

𝑇𝐹𝑆𝑖𝑟𝑟

𝑄𝐶
 

Ciclo Joule-Bryton chiuso. 
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Disegno di impianto: 

 

Trasformazioni: 

• 1-2: compressione adiabatica isoentropica. Lavoro acquistato tramite il compressore. 

• 2-3: espansione isobara. Calore in entrata. 

• 3-4: espansione adiabatica isoentropica. Lavoro ceduto alla turbina. 

• 4-1: compressione isobara. Calore in uscita. 

Rapporto di pressioni: 

𝑟𝑃 =
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
=

𝑃2

𝑃1
=

𝑃3

𝑃4
= (

𝑇2

𝑇1
)

𝑘
𝑘−1

 

Rapporto massimo di pressioni: 

𝑟𝑃,𝑚𝑎𝑥 = (
𝑇3

𝑇1
)

𝑘
𝑘−1

 

Rapporto minimo di pressioni: 

𝑟𝑃,𝑚𝑖𝑛 = 1 

A valori massimi e minimi del rapporto di compressione, il lavoro diventa nullo. Per trovare 

le soluzioni migliori bisognerà fare in modo di ricadere su un valore ottimale del rapporto di 

pressioni. 

Rapporto ottimo di pressioni: 

𝑟𝑃,𝑜𝑝𝑡 = √𝑟𝑃,𝑚𝑎𝑥 

Rendimento: 

𝜂𝐽𝐵 = 1 −
𝑇1

𝑇2
= 1 −

1

𝑟𝑝

𝑘−1
𝑘

 

Potenza prodotta: 

𝐿̇ = 𝑚̇𝑐𝑃 [𝑇3 (1 −
1

𝑟𝑝

𝑘−1
𝑘

) − 𝑇1 (𝑟𝑝

𝑘−1
𝑘 − 1)] 
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Ciclo Joule-Bryton aperto. 

Disegno di impianto: 

 

Trasformazioni: 

• 1-2: compressione adiabatica isoentropica. Lavoro acquistato tramite il compressore. 

• 2-3: espansione isobara. Calore in entrata. 

• 3-4: espansione adiabatica isoentropica. Lavoro ceduto alla turbina. 

• 4-1: compressione isobara. Questa trasformazione nel ciclo aperto è fittizia, avviene 

virtualmente in atmosfera motivo per cui il passaggio da 4 a 1 (stesso ambiente) è 

considerato concettualmente corretto. 

Il ciclo aperto può essere esclusivamente diretto, essendo la trasformazione 4-1 virtuale. 

Miglioramento del rendimento del ciclo Joule-Bryton. 

Rigenerazione: è un metodo applicato al ciclo aperto di grossi impianti industriali, si fa passare il 

fluido di scarico in uno scambiatore di calore che preriscalda il fluido tra il compressore e il 

combustore. Il rendimento aumenta: 

𝜂𝐽𝐵 = 1 −
𝑇1

𝑇3
𝑟𝑝

𝑘−1
𝑘  

Post-combustione: soluzione usata sui velivoli principalmente militari in cui la prima bruciatura 

non consuma tutto l’ossigeno (combustione completa in eccesso di ossidante) quindi i gas 

combusti possono essere ulteriormente bruciati prima di essere espulsi. Il fluido così aumenta 

la sua velocità e la spinta prodotta sale. Il rendimento assume la forma: 

𝜂𝐽𝐵 =
𝐿̇𝑇1 + 𝐿̇𝑢𝑔 − 𝐿̇𝑐

𝑄̇𝑐1 + 𝑄̇𝑐2

 

Ciclo Otto. 
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Trasformazioni: 

• 1-2: compressione adiabatica isoentropica. 

• 2-3: isocora con aumento di pressione, entropia e temperatura. 

• 3-4: espansione adiabatica isoentropica. 

• 4-1: isocora con diminuzione di pressione, entropia e temperatura. 

Rapporto di compressione volumetrico: 

𝑟𝑉 =
𝑉1

𝑉2
 

Cilindrata: 

𝑐𝑐 = 𝑉1 − 𝑉2 

Rendimento: 

𝜂𝑜𝑡𝑡𝑜 = 1 −
1

𝑟𝑉
𝑘−1

 

Lavoro prodotto: 

𝐿 = 𝑀𝑐𝑉[(𝑇3 − 𝑇2) − (𝑇4 − 𝑇1)] 

Il ciclo reale, comprensivo delle fasi di aspirazione della miscela ed espulsione dei gas di scarico 

è detto ciclo indicato, e contiene i dettagli sulle fasi puramente meccaniche e funzionali del 

motore a ciclo Otto. 

Ciclo Diesel. Non è simmetrico. 

 

Trasformazioni: 

• 1-2: compressione adiabatica isoentropica. 

• 2-3: espansione isobara. 

• 3-4: espansione adiabatica isoentropica. 

• 4-1: isocora con diminuzione di pressione, entropia e temperatura. 

Rapporto di compressione volumetrico: 

𝑟𝑉 =
𝑉1

𝑉2
 

Cilindrata: 

𝑐𝑐 = 𝑉1 − 𝑉2 
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Rapporto di combustione: 

𝑧 =
𝑉3

𝑉2
 

Rendimento: 

𝜂𝑑𝑖𝑒𝑠𝑒𝑙 = 1 −
1

𝑟𝑉
𝑘−1

1

𝑘

𝑧𝑘 − 1

𝑧 − 1
 

Il suo rendimento, a parità di prestazioni, è inferiore a quello di un ciclo Otto. 

Lavoro prodotto: 

𝐿 = 𝑀[𝑐𝑃(𝑇3 − 𝑇2) − 𝑐𝑉(𝑇4 − 𝑇1)] 
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 Cicli termodinamici a vapore 

Ciclo Rankine. 

               

Trasformazioni: 

• 1-2: pompaggio isoentropico. 

• 2-3: generazione di vapore a P costante. 

• 3-4: espansione adiabatica isoentropica in turbina. 

• 4-1: condensazione isobara in condensatore. 

Rendimento del ciclo ideale: 

𝜂𝑟𝑎𝑛𝑘,𝑖𝑠 = 1 −
𝑄̇𝐹

𝑄̇𝐶

= 1 −
ℎ5 − ℎ1

ℎ4 − ℎ2
 

Lavoro prodotto: 

𝐿 = 𝐿𝑡𝑢𝑟𝑏 − 𝐿𝑝𝑜𝑚𝑝𝑎 = 𝑚̇(ℎ5 − ℎ4) − 𝑚̇(ℎ2 − ℎ1) 

Irreversibilità: Le irreversibilità vengono introdotte dai componenti meccanici, cioè dalla pompa 

e dalla turbina. Verranno quindi utilizzati i rendimenti isoentropici dei due componenti. In 

generale vale che, complessivamente 

𝜂𝑟𝑎𝑛𝑘 = 1 −
𝑇𝐹

𝑇𝐶
−

𝑇𝐹𝑆𝑖𝑟𝑟

𝑄𝐶
 

Ad alte temperature il ciclo migliora le sue prestazioni, ma si deve in ogni caso rimanere nei 

limiti di temperatura consentiti dall’impianto e dalla sua funzionalità (circa 650-700°C) 

Miglioramento del rendimento del ciclo Rankine. 

1. Ridurre la pressione di condensazione, quindi abbassare 𝑄̇𝐹 

2. Surriscaldare il vapore, cioè aumentare 𝑄̇𝐶 . Ciò vuol dire anche che il lavoro aumenta 

e il titolo di vapore deve essere maggiore nella fase bifasica del ciclo. 

3. Aumentare la pressione di vaporizzazione, che equivale a diminuire 𝑄̇𝐶 . In questo 

modo i contributi per irreversibilità calano a parità di lavoro, inoltre il titolo di vapore 

cala. 

4. Surriscaldare più volte. Ulteriore riscaldamento dopo la prima espansione in turbina 

aumenta la quantità di calore ceduta al fluido (facendo salire anche il titolo), ma 

l’impianto diventa necessariamente più complesso, con più tubazioni e turbine 

pluristadio in serie. 

5. Rigenerazione. 
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Ciclo frigorifero. 

È un ciclo di Carnot a vapore inverso. 

        

Trasformazioni: 

• 1-2: Laminazione attraverso valvola isoentalpica. 

• 2-3: Generazione di vapore a P costante. Completa evaporazione del fluido di lavoro. 

• 3-4: compressione isoentropica. 

• 4-1: condensazione isobara. 

Efficienza frigorifera: 

𝜀𝐹 =
𝑄̇𝐹

𝐿̇𝐶

=
ℎ3 − ℎ2

ℎ4 − ℎ3
 

Efficienza della pompa di calore: 

𝜀𝑃𝐶 =
𝑄̇𝐶

𝐿̇𝐶

=
ℎ4 − ℎ1

ℎ4 − ℎ3
 

Lavoro assorbito: viene assorbito per poter realizzare il ciclo inverso dall’unico utilizzatore, cioè 

il compressore. 

𝐿̇𝐶 = 𝑚̇(ℎ4 − ℎ3) 

Ciclo ad assorbimento. Con l’utilizzo di più sorgenti termiche (almeno 3) si può realizzare 

questo impianto. Acqua mescolata ad ammoniaca viene continuamente mescolata e separata, 

con le opportune temperature operative il compressore non è più necessario, quindi l’impianto 

permette di consumare molto meno. La convenienza economica, tuttavia, la si trova solo su 

grossi impianti, per cui la complessità della cella frigorifera conviene a un frigorifero 

convenzionale. 

Efficienza frigorifera del ciclo ad assorbimento: 

𝜀𝐹 =
𝑄̇𝐹

𝐿̇𝑃 + 𝑄̇𝑆
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 Efflusso dei gas 

Tipi di flusso. Si distinguono generalmente quattro tipi di flusso: 

• Subsonico: 𝑀 < 1 

• Transonico: 𝑀 ≅ 1 

• Supersonico: 𝑀 > 1 

• Ipersonico: 𝑀 ≫ 1 

Velocità di propagazione dell’onda sonora. 

𝑐 = √𝑘𝑅∗𝑇        𝑐𝑜𝑛 𝑘 =
𝐶𝑃

𝐶𝑉
 

Velocità del fluido in ugello. La velocità del fluido in una determinata sezione dell’ugello 

dipende dalla pressione che esso assume all’interno di tale sezione. Presa 𝑇1 la condizione del 

fluido nota all’ingresso dell’ugello, si avrà che 

𝑤 = √
2𝑘

𝑘 − 1
𝑅∗𝑇1 [1 − (

𝑃

𝑃1
)

𝑘−1
𝑘

] 

Un ugello divergente, nel quale la pressione scende con l’allargarsi della sezione, va ad 

accelerare il fluido. L’ugello, quando è considerato ideale, intende la mancanza di ogni tipo di 

irreversibilità. 

Sezione critica (gola). La gola dell’ugello è il punto in cui l’area della sezione dell’ugello è 

minima e la pressione quindi è massima. Il rapporto di pressione critico al quale la gola si deve 

trovare per avere flusso critico deve valere: 

𝜋𝑐 = (
𝑃

𝑃1
)

𝑐

= (
2

𝑘 + 1
)

𝑘
𝑘−1

 

𝜋𝑐 ≅ 0.5 

Varia leggermente in base alla struttura atomica del fluido. 

La velocità nel punto di gola si può facilmente ricavare dalla formula di prima sostituendo il 

valore di 𝜋𝑐 ottenendo 

𝑤 = √
2𝑘

𝑘 + 1
𝑅∗𝑇1 

Ristagno. La condizione di ristagno è identificata dai valori che pressione e temperatura 

assumono nella zona in cui il fluido possiede velocità nulla. 

Comportamento dell’ugello. Ci sono principalmente due tipi di ugello, che vengono 

utilizzati rispettivamente in due casi distinti: 

- La pressione esterna è minore di quella critica. In questo caso il fluido ha ancora la 

potenzialità di essere accelerato, per fare ciò e sfruttare ulteriore salto entalpico si 

utilizzano ugelli De Laval (convergenti divergenti), per accelerare il flusso critico in 

gola, infatti, sarà necessaria una parte divergente. 

- La pressione esterna è maggiore di quella critica. Il flusso non può più effettuare un’ulteriore 

espansione che lo acceleri, quindi si utilizza un ugello solamente convergente. 
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Efficienza isoentropica dell’ugello. 

𝜂𝑖𝑠 =
ℎ0 − ℎ2

ℎ0 − ℎ𝑟𝑒𝑣
=

𝑤𝑟𝑒𝑎𝑙𝑒
2

2𝑐𝑃(𝑇0 − 𝑇𝑟𝑒𝑣)
 

Efflusso da un foro. Possono verificarsi due condizioni durante il processo di efflusso libero 

da un foro, queste dipendono dalla pressione all’esterno del contenitore forato. 

• 𝑃2 < 𝑃𝑐: si verifica blocco sonico con velocità sonica costante e fluido in pressione 

critica al trapasso. 

• 𝑃2 > 𝑃𝑐: l’efflusso è subsonico con pressione al trapasso stabile a livello di quella 

ambientale. 
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 Combustione 

Tipi di combustione. Ci sono tre tipi di combustione: 

- Stechiometrica: le proporzioni sono perfette e seguono la regola stechiometrica data 

dalla formula generale della combustione. 

- In eccesso di ossidante (completa): tutto l’idrocarburo viene bruciato e si origina solo 

anidride carbonica, oltre all’acqua e al restante ossigeno. 

- In difetto di ossidante (incompleta): la combustione è imperfetta, oltre all’anidride 

carbonica e all’acqua si crea monossido di carbonio, composto pericoloso e nocivo. 

Formula generale della combustione. 

𝐶𝛼𝐻𝛽 + 𝛾𝑂2  → 𝛼𝐶𝑂2 +
𝛽

2
𝐻2𝑂     𝑐𝑜𝑛 𝛾 = 𝛼 +

𝛽

4
 

Reazione con aria. 

𝐶𝛼𝐻𝛽 + 𝛾(𝑂2 + 3.76𝑁2)  →  𝛼𝐶𝑂2 +
𝛽

2
𝐻2𝑂 + 3.76𝛾𝑁2 

Rapporto aria-combustibile in camera di combustione. 

𝛼 =
𝑚̇𝑎

𝑚̇𝑐
 

Bilancio di massa in camera di combustione. 

𝑚̇𝑝 = (1 + 𝛼)𝑚̇𝑐 

Bilancio energetico in camera di combustione. 

𝑚̇𝑐Δℎ𝑐 + 𝛼𝑚̇𝑐Δℎ𝑎 − (1 + 𝛼)𝑚̇𝑐Δℎ𝑝 + 𝑚̇𝑐Δℎ0 − 𝑄̇ = 0 

Riscrivendo la formula inserendo le entalpie naturali di combustibile, comburente e prodotti, 

si ottiene una dipendenza dai Δℎ di ogni elemento rispetto al loro stato base. Raccogliendo 

tutti i valori di entalpia standard si ottiene l’entalpia standard di reazione. 

Δℎ0 = −ℎ0𝑐 − 𝛼ℎ0𝑎 + (1 + 𝛼)ℎ0𝑝 

Che indica la quantità di energia scambiata per unità di massa dal sistema quando tutti gli 

elementi sono a stessa temperatura 𝑇0 (solitamente 25°C). 

Potere calorifico. È la quantità di calore prodotto quando reagenti e prodotti sono alla stessa 

temperatura generica. 

𝑃𝑐 = −Δℎ0 

Temperatura adiabatica di fiamma. Temperatura raggiunta dai fumi quando le specie 

entrano in camera a 𝑇0 = 25°𝐶 e la combustione è del tutto adiabatica. 

𝑇𝑎𝑑 =
𝑃𝑐𝑖

(1 + 𝛼)𝑐𝑃
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 Aria umida 

Miscele. Le miscele sono insiemi di diversi componenti non reagenti tra loro. Nel caso in cui 

le sue componenti siano tutte ideali, allora la miscela si dirà ideale. Nelle miscele il numero 

totale di moli, l’energia interna totale e l’entropia totale sono scomponibili in somme di parti 

relative a ogni singolo componente della miscela, proporzionalmente legate a quante moli di 

ogni elemento sono presenti in miscela. 

Teorema di Gibbs. Dice che l’energia interna e l’entropia sono equivalenti alla somma delle 

energie interne e delle entropie di ogni singolo elemento della miscela. 

Pressione parziale del componente 𝒊. 

𝑃𝑖 = 𝑁𝑖

𝑅𝑇

𝑉
 

Pressione assunta da un componente se fosse libero e da solo nel volume 𝑉. 

Legge di Dalton. 

𝑃 = ∑ 𝑃𝑖 

Frazione molare, massa e calore specifico fittizi. 

𝑥𝑖 =
𝑁𝑖

𝑁
 

Da cui si definiscono 

𝑀𝑚,𝑓 = ∑ 𝑥𝑖𝑀𝑚,𝑖 

𝑐𝑉,𝑓 = ∑ 𝑥𝑖𝑐𝑉,𝑖 

Stato omogeneo ed eterogeneo. Allo stato omogeneo lo stato deve essere per forza quello 

di vapore surriscaldato. Non vi è altro che vapore, la pressione è quindi inferiore a quella di 

saturazione dell’aria, cioè il punto in cui l’acqua inizia a condensare. Nello stato eterogeneo 

invece, l’aria è in condizione limite sulla curva di saturazione, inizia a formarsi una fase liquida 

e le quantità reciproche sono definite dal titolo del vapore. 

Energia interna ed entalpia dell’aria umida. 

𝑈 = 𝑈𝑎𝑠 + 𝑈𝑣 

𝐻 = 𝐻𝑎𝑠 + 𝐻𝑣 

Punto di rugiada. Punto in cui, durante un raffreddamento isobaro a massa costante, il vapore 

inizia a condensare in gocce sulle superfici. 

Punto di brina. Punto in cui, durante un raffreddamento isobaro a massa costante, il vapore, 

trovandosi a pressioni inferiori di quelle del punto critico, inizia a ghiacciare direttamente sulle 

superfici senza passare dallo stato liquido. 

Compressione isotermica. Durante una compressione isotermica, una volta raggiunta la 

curva limite, il vapore si limiterà a restare in quello stato. Al massimo potrà aumentare la 

pressione totale della miscela, ma non quella del vapore. 

Aggiunta di acqua a P e T totali costanti. L’aggiunta di acqua può avere diversi esiti in base 

alle condizioni in cui la si effettua, 
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• Se l’aggiunta di acqua è tale da non raggiungere lo stato limite, tutta l’acqua aggiunta 

si trasformerà in vapore. 

• Se l’aggiunta di acqua è tale da far raggiungere lo stato limite al vapore, parte del vapore 

dovrà per forza condensare. 

Contenuto d’acqua, umidità assoluta e umidità relativa. 

𝑥 =
𝑀𝐻2𝑂

𝑀𝑎𝑠
 

𝑥𝑉 =
𝑀𝑉

𝑀𝑎𝑠
 

𝜑 =
𝑃𝑉

𝑃𝑠𝑎𝑡
 

In un sistema eterogeneo 𝑥 > 𝑥𝑉 

In un sistema omogeneo 𝑥 = 𝑥𝑉, inoltre 

𝑥𝑉 = 0.622
𝑃𝑉

𝑃 − 𝑃𝑉
= 0.622

𝜑𝑃𝑠𝑎𝑡

𝑃 − 𝜑𝑃𝑠𝑎𝑡
 

 

Entalpia specifica dell’aria umida. 

ℎ∗ =
𝐻

𝑀𝑎𝑠
 

N.B.: la dipendenza è con la massa di aria secca, 

non con la massa totale. 

L’entalpia, in funzione di altri parametri 

importanti dell’aria umida, viene 

rappresentata sul piano cartesiano grazie ai 

diagrammi di Mollier. 

Nella zona degli stati omogenei 

ℎ∗ = 𝑐𝑃,𝑎𝑠𝑡 + 𝑥𝑉(ℎ𝑙𝑣 + 𝑐𝑃,𝑉𝑡) 

Nella zona delle nebbie 

ℎ∗ = 𝑐𝑃,𝑎𝑠𝑡 + 𝑥𝑉,𝑠(ℎ𝑙𝑣 + 𝑐𝑃,𝑉𝑡) + (𝑥 − 𝑥𝑣𝑠)𝑐𝐿𝑡 

Nella zona delle brine 

ℎ∗ = 𝑐𝑃,𝑎𝑠𝑡 + 𝑥𝑉,𝑠(ℎ𝑙𝑣 + 𝑐𝑃,𝑉𝑡) + (𝑥 − 𝑥𝑣𝑠)(ℎ𝑙𝑠 + 𝑐𝑔𝑡) 

Con 𝑡 si indica una variazione virtuale di temperatura, nella zona mista a temperatura costante 

la scrittura si semplifica. 

ℎ∗ = 𝑥𝑣𝑠ℎ𝑙𝑣 + 𝑥𝑔ℎ𝑙𝑠 
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 Trasmissione del calore 

Flusso termico areico. 

𝐽(𝑡) =
𝑄̇(𝑡)

𝑆
 

Bilancio energetico per un corpo che subisce trasmissione di calore. 

𝑑𝑈

𝑑𝑡
= 𝑄̇← + Σ̇𝑔𝑒𝑛

←  

Postulato di Fourier per la conduzione. 

𝐽 = −𝐾 𝑔𝑟𝑎𝑑(𝑇) 

Con 𝐾 detta conduttività termica. 

Legge di Newton per la convezione. 

𝐽 = ℎ(𝑇𝑃 − 𝑇∞) 

Con ℎ detto coefficiente convettivo 

Legge di Stefan-Boltzmann. 

Potenza termica scambiata per irraggiamento. 

𝑄̇ = 𝑆𝜎𝑜𝑇𝑠
4 

Con 𝜎𝑜 = 5,67 ∗ 10−8 𝑊/𝑚2𝐾2 costante di Stefan-Boltzmann.  
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 Conduzione 

Postulato di Fourier per flusso monodimensionale. 

𝐽 = −𝐾
𝑑𝑇

𝑑𝑛
 

Con 𝑛 direzione del flusso. La conduttività termica del materiale è una proprietà isotropa che 

dipende dalla struttura molecolare. 

Equazione generale della conduzione. 

𝜌𝑐
𝑑𝑇

𝑑𝑡
= 𝐾∇2𝑇 + 𝜎 

Dalla quale si ricava l’andamento della temperatura nello spazio e nel tempo. A questa, sotto 

casi particolari, si aggiungono delle semplificazioni: 

• Diffusione: 𝜎 = 0 per cui si ha 𝜌𝑐
𝑑𝑇

𝑑𝑡
= 𝐾∇2𝑇 

• Regime stazionario (equazione di Poisson): 
𝑑𝑇

𝑑𝑡
= 0 per cui si ha 0 = 𝐾∇2𝑇 + 𝜎 

• Equazione di Laplace: insieme delle due precedenti, per cui si ha 0 = ∇2𝑇 

Condizioni al contorno per lo studio delle soluzioni dell’equazione della conduzione. 

1° tipo. Condizione di Dirichlet: distribuzione di temperatura in superficie e temperatura 

iniziale del volume note. 

2° tipo. Condizione di Neumann: variazione della temperatura nota, cioè noto il flusso 

termico areico. 

3° tipo. Condizione di Cauchy: lo scambio termico sul contorno è costante. 

4° tipo. Il flusso termico uscente da un corpo è uguale al flusso termico entrante in 

un corpo a contatto con il primo. 

Sistemi di coordinate. Ai nostri fini saranno sufficienti due tipi di sistema di riferimento per 

lo studio della distribuzione di temperatura: 

• Coordinate cartesiane ortogonali, dove 𝑇 = 𝑇(𝑥, 𝑦, 𝑧, 𝑡) 

∇2𝑇 =
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
 

 In un sistema monodimensionale si semplifica e diventa 

∇2𝑇 =
𝜕2𝑇

𝜕𝑥2
 

• Coordinate cilindriche, dove 𝑇 = 𝑇(𝑟, 𝜃, 𝑧, 𝑡) 

∇2𝑇 =
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) +

1

𝑟2

𝜕2𝑇

𝜕𝜃2
+

𝜕2𝑇

𝜕𝑧2
 

In un sistema monodimensionale si semplifica e diventa 

∇2𝑇 =
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) 

Resistenza conduttiva. Per una parete piana: 

𝑅𝑘 =
𝐿

𝐾𝑆
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Per una parete cilindrica: 

𝑅𝑘 =
1

2𝜋𝐿𝐾
ln (

𝑟2

𝑟1
) 

Resistenza convettiva. 

𝑅𝑐𝑜𝑛𝑣 =
1

ℎ𝑆
 

Con 𝑆 superficie che può essere sia quella del cilindro che quella di una parete piana e 

ℎ coefficiente convettivo. 

Soluzioni generali dell’equazione della conduzione. 

In generale, per il caso di distribuzione in parete piana indefinita, basterà integrare l’equazione 

per ottenere che 

𝑇 = −
𝜎

2𝐾
𝑥2 + 𝐴𝑥 + 𝐵 

Per il caso, invece, di un corpo cilindrico indefinito 

𝑇 = −
𝜎

4𝐾
𝑟2 + 𝐶 ln 𝑟 + 𝐷 

Studio dei casi di distribuzione. 

1. Parete piana indefinita, senza generazione interna, con condizioni di prima specie. 

La distribuzione è lineare nella parete: 
𝑑2𝑇

𝑑𝑥2 = 0 

𝑇 =
𝑇2 − 𝑇1

𝐿
𝑥 + 𝑇1 

𝑄̇ =
𝑇1 − 𝑇2

𝑅𝑘,𝑝𝑎𝑟𝑒𝑡𝑒
 

2. Parete piana indefinita, senza generazione interna, con condizioni di terza specie. 

Le condizioni per la terza specie portano a inserire: 

{

𝑥 = 0                                        

−𝐾
𝑑𝑇

𝑑𝑥
|

𝑥=0
= ℎ1(𝑇∞1 − 𝑇)          {

𝑥 = 𝐿                                       

−𝐾
𝑑𝑇

𝑑𝑥
|

𝑥=𝐿
= ℎ2(𝑇 − 𝑇∞2) 

Che portano a descrivere 𝑇 solo all’interno della parete come 

𝑇 = −
𝑇∞1 − 𝑇∞2

1
ℎ1

+
𝐿
𝐾 +

1
ℎ2

(
𝑥

𝐾
+

1

ℎ1
) + 𝑇∞1 

𝑄̇ =
𝑇∞1 − 𝑇∞2

1
ℎ1𝑆

+
𝐿

𝐾𝑆 +
1

ℎ2𝑆

 

3. Parete piana indefinita e composta, senza generazione interna, con condizioni di prima specie. 

Si evita di studiare l’andamento di 𝑇, visto che cambierebbe a seconda della zona della parete, 

si sfruttano le potenze termiche di ogni sezione descritte come in 1. Sommando tutto si ha che 
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𝑄̇ =
𝑇1 − 𝑇𝑛

𝑅𝑡𝑜𝑡
 

Dove le resistenze di ogni strato sono da considerarsi come in serie, complessivamente 

𝑅𝑡𝑜𝑡 = ∑ 𝑅𝑘,𝑖

𝑛

𝑖

 

4. Parete piana indefinita, con generazione interna, con condizioni di prima specie. 

In presenza di generazione interna 𝜎 ≠ 0, per cui si dovrà sfruttare l’equazione di Poisson. 

𝑇 = −
𝜎

2𝐾
𝑥2 + (−

𝑇1 − 𝑇2

𝐿
+

𝜎𝐿

2𝐾
) 𝑥 + 𝑇1 

La distribuzione ha un massimo in 

𝑥 =
𝐿

2
−

𝑇1 − 𝑇2

𝐿

𝐾

𝜎
 

𝑄̇ = [𝜎𝑥 − (
𝜎𝐿

2
−

𝐾(𝑇1 − 𝑇2)

𝐿
)] 𝑆 

5. Parete cilindrica indefinita, senza generazione interna, con condizioni di prima specie. 

Sotto le ipotesi di distribuzione monodimensionale 
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑇

𝑑𝑟
) = 0 

𝑇 = 𝑇1 −
𝑇1 − 𝑇2

ln (
𝑟2
𝑟1

)
ln(𝑟/𝑟1) 

𝑄̇ =
𝑇1 − 𝑇2

𝑅𝑘,𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑜
 

6. Parete cilindrica indefinita, senza generazione interna, con condizioni di terza specie. 

Le condizioni per la terza specie portano a inserire: 

{

𝑟 = 𝑟1                                        

−𝐾
𝑑𝑇

𝑑𝑟
|

𝑟=𝑟1

= ℎ1(𝑇𝑖𝑛𝑡 − 𝑇)         {

𝑟 = 𝑟2                                       

−𝐾
𝑑𝑇

𝑑𝑟
|

𝑟=𝑟2

= ℎ2(𝑇 − 𝑇∞)  

𝑄̇ =
𝑇𝑖𝑛𝑡 − 𝑇∞

1
2𝜋𝐿 [

1
ℎ1𝑟1

+
1
𝐾 ln (

𝑟2
𝑟1

) +
1

ℎ2𝑟2
]
 

7. Parete cilindrica indefinita, con generazione interna, con condizioni di prima specie. 

Valgono tutti gli argomenti discussi al punto 4. In generale l’andamento avrà forma 

𝑇 = −
𝜎

4𝐾
𝑟2 + 𝐶 ln(𝑟) + 𝐷 

8. Parete cilindrica indefinita e composta, senza generazione interna, con condizioni di prima specie. 

Valgono tutti gli argomenti discussi al punto 3. 

𝑄̇ =
𝑇𝑖𝑛𝑡 − 𝑇∞

𝑅𝑡𝑜𝑡
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Isolamento di una parete. L’aggiunta di uno spessore isolante in una parete piana e in una 

cilindrica si rivede nella resistenza termica semplicemente come un termine aggiuntivo di 

resistenza. Nelle pareti cilindriche però, l’isolante inizia a lavorare correttamente quando il suo 

spessore è maggiore di un certo raggio critico 

𝑟𝑐𝑟 =
𝐾𝑖𝑠

ℎ𝑒
 

𝑅𝑡𝑜𝑡 =
1

2𝜋𝐿
(𝑅𝑐𝑜𝑛𝑣,𝑖𝑛𝑡 + 𝑅𝑘,1 +

1

𝐾𝑖𝑠
ln

𝑟𝑖𝑠

𝑟2
+

1

ℎ𝑒𝑟𝑖𝑠
) 

Mantenendo un raggio minore del raggio critico, in realtà lo scambio termico aumenta! Questa 

proprietà può essere ben sfruttata a seconda dell’uso che si vuole fare della tubazione, quindi 

scegliendo se si vuole disperdere o meno potenza termica. 

Equazione generale della distribuzione di temperatura nell’aletta. 

L’alettatura serve ad aumentare la superficie del corpo di cui si vuole scambiare il calore. È 

logico pensare che lungo l’aletta, la temperatura vari in funzione della distanza dal corpo 

principale. 

𝑑2𝜃

𝑑𝑥2
− 𝑚2𝜃 = 0 

In cui 

𝜃 = 𝑇 − 𝑇∞ 

𝑚2 =
ℎ𝑃

𝐾𝑆
 

Aletta finita. Un’aletta finita è definita come di lunghezza 𝐿 finita e con la superficie 

all’estremità supponibile adiabatica in quanto trascurabile rispetto alla superficie laterale. 

L’aletta si dirà adiabatica quando 𝑚𝐿 > 2.7. Si avranno le condizioni al contorno 

{
𝑥 = 𝐿

𝑑𝜃

𝑑𝑥
= 0

 

Che unite allo studio della soluzione dell’equazione generale porterà a 

𝑇 = 𝑇∞ + (𝑇0 − 𝑇∞)
cosh(𝑚(𝐿 − 𝑥))

cosh(𝑚𝐿)
 

𝑄̇𝑎𝑑 = 𝑄̇∞ tanh(𝑚𝐿) 

𝜂𝑎𝑑 = √
ℎ𝑃

𝐾𝑆
tanh(𝑚𝐿) 

Aletta infinita. Questo tipo di aletta è un modello che possiede lunghezza infinita. 

{
𝑥 = 0
𝜃 = 0

 

Che unite allo studio della soluzione dell’equazione generale porterà a 

𝑇 = 𝑇∞ + (𝑇0 − 𝑇∞)𝑒−𝑚𝑥 

𝑄̇∞ = √ℎ𝑃𝐾𝑆(𝑇0 − 𝑇∞) 
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Proprietà funzionale delle alette è l’efficienza: 

𝜂 =
𝑄̇

𝑄̇𝑜

 

𝜂𝑎𝑑 = √
ℎ𝑃

𝐾𝑆
 

Conduzione in regime variabile. In un regime non costante troveremo occorrenzialmente 

un transitorio termico per cui sarà necessario inserire condizioni al contorno adeguate. 

L’equazione da risolvere sarà quella di Fourier senza generazione interna, riformulata come: 

1

𝛼

𝜕𝑇

𝜕𝑡
=

𝜕2𝑇

𝜕𝑥2
 

Dove 𝛼 =
𝐾

𝜌𝑐
 è detta diffusività termica. 

Si inseriscono anche 

• Temperatura adimensionale: 𝜃 =
𝑇−𝑇∞

𝑇0−𝑇∞
 

• Lunghezza adimensionale: 𝜉 =
𝑥

𝐿
 

• Numero di Fourier (adimensionalizza il tempo): 𝐹𝑜𝑢 =
𝑎𝑡

𝐿2 

• Numero di Biot (adimensionalizza resistenza convettiva e conduttiva): 𝐵𝑖 =
ℎ𝐿

𝐾
 

Sostituendo questi termini si riscrive l’equazione della conduzione come 

𝜕𝜃

𝜕𝐹𝑜𝑢
=

𝜕2𝜃

𝜕𝜉2
 

Il numero di Biot non vi rientra, ma è un importante indicatore di quale sia la parte dominante 

nello scambio di potenza termica: 

• 𝐵𝑖 ≪ 0.01 porta alla netta predominanza della parte convettiva, la temperatura viene 

presa costante nella parete. 

𝜃 = 𝜃(𝐹𝑜𝑢, 𝐵𝑖) 

• 0.01 < 𝐵𝑖 < 20 in questo caso convezione e conduzione sono comparabili, 

l’andamento è legato a condizioni al contorno del terzo tipo. 

𝜃 = 𝜃(𝜉, 𝐹𝑜𝑢, 𝐵𝑖) 

• 𝐵𝑖 > 20 rende predominante la conduzione, serviranno condizioni al contorno di 

prima specie. 

𝜃 = 𝜃(𝜉, 𝐹𝑜𝑢) 

Modello a resistenza interna trascurabile. L’equazione di Fourier non è più utilizzabile 

visto che in questo caso la temperatura non è dipendente direttamente dal tempo. Siamo nel 

caso in cui 𝐵𝑖 ≪ 0.01, la parte di conduzione interna alla parete e la sua resistenza termica 

sono trascurabili, la temperatura infatti resta costante lungo lo spessore della parete. La 

temperatura assumerà la forma 

𝜃 = 𝜃0𝑒−𝐵𝑖 𝐹𝑜𝑢 
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 Convezione 

Legge di Newton per la convezione.  

𝐽𝑐 = ℎ(𝑇𝑃 − 𝑇𝑓) 

Dove ℎ è il coefficiente convettivo, 𝑇𝑃 è la temperatura del corpo e 𝑇𝑓 quella del fluido. 

Quest’ultima può essere interpretata come 

• 𝑇𝑓 = 𝑇∞ se presa abbastanza lontano dal corpo, nel fluido indisturbato 

• 𝑇𝑓 come media pesata su tutta la portata nel caso di un moto confinato. In questo caso 

viene detta temperatura di miscelamento adiabatico. 

Fenomeni di trasporto su lastra piana. ogni filetto fluido che passa nei pressi della lastra 

forma uno strato limite. In questa zona particolare la velocità varia da zero a velocità di regime 

del fluido a causa degli effetti dell’attrito e in particolare della viscosità dinamica. 

Durante questo passaggio, il corpo cede un flusso di calore al fluido che scorre nei suoi pressi. 

L’effetto dell’aumento di temperatura e l’espansione che ne deriva, spinge il fluido ad 

allontanarsi dal corpo caldo. Così facendo si generano moti convettivi che ricambiano il fluido 

nei pressi della superficie. 

Per studiare il caso complesso della convezione e della distribuzione di temperatura nelle varie 

zone del fluido si sfrutta il teorema di Buckingham.  

Nel caso della convezione forzata, avendo 7 grandezze caratteristiche del fenomeno, misurate 

grazie a 4 unità di misura fondamentali, si ottiene che si possono scrivere 3 gruppi 

adimensionali che caratterizzano il moto convettivo dei fluidi che sono i numeri di Nusselt, 

Reynolds e Prandtl. 

Nel caso della convezione naturale, invece, ai gruppi adimensionali si aggiunge quello di 

Grashoff. 

Numero di Nusselt. 

𝑁𝑢 =
ℎ𝜆

𝐾
 

Con 𝜆 che è la lunghezza caratteristica della parete. Il suo valore varia a seconda della 

geometria, nel caso di parete piana 𝜆 = 𝐿 mentre nel caso di parete cilindrica 𝜆 = 𝐷𝑝𝑎𝑟𝑒𝑡𝑒.  

Questo numero è interpretabile come rapporto tra i flussi termici scambiati per convezione e 

quelli scambiati per conduzione. 

Si nota la sua somiglianza con il numero di Biot, che invece di avere la conduttività del fluido 

come nel numero di Nusselt, ha la conduttività del solido. 

Numero di Reynolds. 

𝑅𝑒 =
𝜌𝑤𝜆

𝜇
 

Può essere inteso come un rapporto tra forze di inerzia e forze viscose e rappresenta lo stato 

di moto del fluido. In particolare, quando assume valori 2000 < 𝑅𝑒 < 4000 si entra in un 

campo di transizione, valori maggiori indicano un campo di moto turbolento, valori inferiori 

un moto laminare. È valido solo in convezione forzata. 
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Numero di Prandtl. 

𝑃𝑟 =
𝑐𝑃𝜇

𝐾
 

Proprietà del fluido. È un rapporto tra diffusività della quantità di moto e diffusività termica. 

Legame funzionale tra i numeri caratteristici per la convezione forzata. 

𝑁𝑢 = 𝐴 𝑅𝑒𝑎  𝑃𝑟𝑏 

Numero di Grashoff. 

𝐺𝑟 =
𝜌2𝑔𝛽Δ𝑇𝜆3

𝜇2
 

Rappresenta il rapporto tra forze di inerzia, forze di galleggiamento e viscosità al quadrato. 

Quando le forze a numeratore prevalgono sul quadrato di quelle viscose, si avrà l’instaurarsi di 

un moto turbolento. È valido solo in convezione naturale. 

Legame funzionale tra i numeri caratteristici per la convezione naturale. 

𝑁𝑢 = 𝐴 𝐺𝑟𝑎  𝑃𝑟𝑏 

Numero di Rayleight. Molto spesso le interpolazioni sui dati per trovare le costanti 𝑎 e 

𝑏 rivelano che i due esponenti sono identici, questo permette di inserire un nuovo gruppo 

adimensionale: 

𝑅𝑎 = 𝐺𝑟 𝑃𝑟 

→     𝑁𝑢 = 𝐴 𝑅𝑎𝑎 
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 Scambiatori di calore 

Coefficiente globale di scambio termico. È il coefficiente che esprime la conduttanza 

specifica totale dello scambiatore, è quindi influenzato da tutte le caratteristiche fisiche e 

geometriche di fluido e scambiatore. 

𝑈 =
1

𝑆𝑅𝑡𝑜𝑡
 

Dove 𝑆 è detta superficie di scambio nominale dello scambiatore. 

Potenza termica scambiata. 

𝑄̇ = 𝑈𝑆(𝑇𝑖 − 𝑇𝑒) 

Con 𝑇𝑖 e 𝑇𝑒 temperature a cavallo della parete di scambio. 

Differenza di temperatura medio-logaritmica. 

Δ𝑇𝑚𝑙 =
Δ𝑇2 − Δ𝑇1

ln (
Δ𝑇2
Δ𝑇1

)
 

Con Δ𝑇𝑖 = 𝑇𝑐,𝑖 − 𝑇𝑓,𝑖 

Capacità termica di portata. Propria di ogni fluido coinvolto nello scambio. 

𝐶 = 𝑚̇𝑐𝑃 

Metodi di dimensionamento degli scambiatori. Sono metodi che permettono di 

dimensionare e verificare la funzionalità in base allo scopo degli scambiatori di calore. 

• Differenza di temperatura medio-logaritmica: permette di dimensionare la superficie di 

scambio in base alle temperature del fluido che vi scorre. 

• Metodo NTU: note le caratteristiche delle superfici di scambio termico si studiano le 

temperature di ingressi e uscite dello scambiatore per valutare se il dispositivo è adatto 

allo scopo preposto. 

Scambiatore in equicorrente via 𝚫𝑻𝒎𝒍. 

𝑄̇ = 𝐶𝑐(𝑇𝑐,1 − 𝑇𝑐,2) = 𝐶𝑓(𝑇𝑓,2 − 𝑇𝑓,1) 

Scambiatore in controcorrente via 𝚫𝑻𝒎𝒍. 

𝑄̇ = 𝐶𝑐(𝑇𝑐,2 − 𝑇𝑐,1) = 𝐶𝑓(𝑇𝑓,2 − 𝑇𝑓,1) 

Potenza termica scambiata per un qualsiasi scambiatore. 

𝑄̇ = 𝑈𝑆ΔT𝑚𝑙 

Nel disegno delle distribuzioni di temperatura prestare attenzione al fatto che le due linee non 

si devono mai intersecare. I gradienti, inoltre, nelle sezioni di ingresso sono massimi e in uscita 

sono minimi. 

Efficienza di uno scambiatore. Rapporto tra la potenza reale e quella teorica scambiata da 

uno scambiatore in controcorrente con una superficie infinita. 

𝜀 =
𝑄̇

𝑄̇∞
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Dove 𝑄̇∞ = 𝐶𝑚𝑖𝑛(𝑇𝑐,𝑖𝑛 − 𝑇𝑓,𝑖𝑛) insieme a 𝐶𝑚𝑖𝑛 = min(𝐶𝑐 , 𝐶𝑓) 

Metodo NTU. Sfruttando l’analisi dimensionale e il teorema di Buckingham si ottengono tre 

quantità adimensionali: una è l’efficienza, vista prima. Segue il rapporto di capacità, definito 

come 

1

𝐶
=

𝐶𝑚𝑎𝑥

𝐶𝑚𝑖𝑛
 

Scegliendo 𝐶𝑚𝑎𝑥 e 𝐶𝑚𝑖𝑛 dalle capacità termiche dei due fluidi. E per ultimo, il Numero di 

Unità di Scambio (o Number of Transfer Units) da cui il metodo prende il suo nome: 

𝑁𝑇𝑈 =
𝑈𝑆

𝐶𝑚𝑖𝑛
 

Seguendo il teorema di Buckingham, si potrà costruire una relazione che lega efficienza a 

rapporto di capacità e NTU: 

𝜀 = 𝜀(𝑁𝑇𝑈, 𝐶) 
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 Irraggiamento 

Velocità delle onde in un mezzo, lunghezza d’onda, frequenza. 

𝑐 =
𝑐

𝑛
 

𝜆 =
𝑐

𝜈
 

Intensità dell’onda elettromagnetica. L’intensità prodotta da un’onda elettromagnetica 

dipende da diversi fattori, primi fra tutti l’area e il tempo di esposizione/emissione, ma anche 

da quantità di calore emessa, lunghezza d’onda dell’onda e apertura angolare (concentrazione) 

delle onde. Si distinguono quattro tipi principali di intensità: 

1. Intensità angolare monocromatica 

𝐼𝜔,𝜆 =
𝑑𝑞

𝑑𝑡 𝑑𝐴𝑛 𝑑𝜆 𝑑𝜔
 

2. Intensità angolare integrale 

𝐼𝜔,𝜆 =
𝑑𝑞

𝑑𝑡 𝑑𝐴𝑛 𝑑𝜔
 

3. Intensità emisferica monocromatica 

𝐼𝜔,𝜆 =
𝑑𝑞

𝑑𝑡 𝑑𝐴𝑛 𝑑𝜆
 

4. Intensità emisferica integrale 

𝐼𝜔,𝜆 =
𝑑𝑞

𝑑𝑡 𝑑𝐴𝑛
 

Quando l’intensità è riferita a una sorgente che emette allora sarà detta intensità emissiva. 

Corpo nero. Corpo che emette in modo isotropo in tutte le direzioni e la cui intensità di 

emissione dipende dalla sua temperatura. La sua intensità emisferica equivale a 

𝐼𝜆
𝑛 =

2ℎ𝑐
2

𝜆5 [𝑒
ℎ𝑐

𝜆𝑘𝑇 − 1]

 

Dove ℎ = 6.626 ∗ 10−34 𝐽𝑠 è la costante di Planck, 𝑘 = 1,38 ∗ 10−23 𝐽

𝐾
 la costante di 

Boltzmann e 𝜆 la lunghezza d’onda. 

Legge di Planck. 

𝐸𝜆
𝑛 =

2𝜋ℎ𝑐
2

𝜆5 [𝑒
ℎ𝑐

𝜆𝑘𝑇 − 1]

 

Legge di Stefan-Boltzmann per l’irraggiamento. 

𝐸𝑛 = 𝜎0𝑇4 

Dove 𝜎0 = 5.67 ∗ 10−8 𝑊

𝑚2𝐾4 è detta costante di Stefan-Boltzmann. Al crescere di T, la 

lunghezza d’onda del massimo assume valori più bassi. 
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Legge di Wien. Lega la lunghezza d’onda e la temperatura del corpo emissivo. 

𝜆𝑚𝑎𝑥𝑇 = 2897,8 𝜇𝑚 ∗ 𝐾 

Interazione corpo-radiazione. I corpi, quando colpiti da una radiazione, si possono 

comportare in modo diverso, rispettando sempre il bilancio di irradiazione: 

𝐺 = 𝐺𝑟𝑖𝑓𝑙𝑒𝑠𝑠𝑎 + 𝐺𝑎𝑠𝑠𝑜𝑟𝑏𝑖𝑡𝑎 + 𝐺𝑡𝑟𝑎𝑠𝑚𝑒𝑠𝑠𝑎 

In termini adimensionali, 

1 = 𝜌 + 𝛼 + 𝜏 

Nel caso particolare di un corpo nero, non si ha riflessione né trasmissione, quindi 

𝐺 = 𝐺𝑎𝑠𝑠𝑜𝑟𝑏𝑖𝑡𝑎  ,     𝛼 = 1 

Brillanza o Radiosità. È la somma tra la quantità di radiazione riflessa e quella naturalmente 

emessa: 

𝐽 = 𝐸 + 𝐺𝜌 

Il modo in cui le onde vengono riflesse dipende dal tipo di superficie, dal materiale e dalla sua 

scabrosità. 

Emissività e superficie grigia. Qualsiasi superficie che non è un corpo nero ed emette in 

modo diffuso è detta superficie grigia. Il rapporto tra quantità di energia emessa da un corpo 

e quella emessa da un corpo nero a stessa temperatura è detto emissività: 

𝜀 =
𝐸(𝑇)

𝐸𝑛(𝑇)
=

𝐸(𝑇)

𝜎0𝑇4
 

Da cui, conoscendone l’emissività, si può ricavare la potenza emessa da un qualsiasi corpo. 

Teorema di Kirchoff. Una cavità vuota in cui è presente una radiazione isotropa e omogenea 

è una radiazione integrale poiché contiene la stessa energia che verrebbe emessa da un corpo nero 

a tale temperatura. Inoltre, vale che 𝛼 = 𝜀. 

Fattore di vista. La trasmissione per irraggiamento dipende non solo dalla tipologia di 

superficie, ma anche dall’orientamento reciproco tra emittente e ricevente. Il fattore di vista è 

il parametro che indica come le due superfici si rapportano. 

𝐹𝑖→𝑗 =
𝑄̇𝑖→𝑗

𝑄̇
 

𝐹1→2 =
∫ ∫ cos(𝜃1) cos(𝜃2) 𝑑𝐴1 𝑑𝐴2

𝐴1𝜋𝑟2
 

Legge di reciprocità. 

𝐹1→2𝐴1 = 𝐹2→1𝐴2 

Legge di sovrapposizione. 

𝐹1→2+3 = 𝐹1→2 + 𝐹1→3 

Legge di sommabilità in cavità chiusa. 

∑ 𝐹𝑘 = 1 
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Potenza termica scambiata tra due superfici grigie. 

𝑄̇12 =
𝜎0(𝑇1

4 − 𝑇2
4)

1 − 𝛼1
𝛼1𝐴1

+
1 − 𝛼2
𝛼2𝐴2

+
1

𝐴1𝐹1→2

 

Con 
1−𝛼𝑖

𝛼𝑖𝐴𝑖
 resistenze di superficie e 

1

𝐴𝑖𝐹𝑖→𝑗
 resistenza di posizione. Si distinguono alcuni casi particolari: 

1. Superfici nere 

𝑄̇12 =
𝜎0(𝑇1

4 − 𝑇2
4)

1
𝐴1𝐹1→2

 

2. Superfici piane, nere e uguali 

𝑄̇12 = 𝜎0𝐴(𝑇1
4 − 𝑇2

4) 

3. Corpo nero (1) all’interno di cavità nera (2) 

𝑄̇12 = 𝜎0𝐴1(𝑇1
4 − 𝑇2

4) 

4. Corpo nero emette verso uno grigio, piani, paralleli e uguali 

𝑄̇12 = 𝜎0𝐴𝛼2(𝑇1
4 − 𝑇2

4) 

Si può inserire tra due superfici uno schermo anti-radiante, questo fungerà da ulteriore 

resistenza, infatti è uno schermo che provvede a isolare un corpo dalle radiazioni di un altro.  
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